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Abstract

In this paper we analyze several extensions to the I-cut-you-freeze protocol (Pegden et al.,
2017), in which two parties take turns proposing districts, where the non-proposing party
chooses one of those districts to keep, or “freeze.” We attempt to introduce further con-
straints on the protocol that bring it closer to the current reality. Larger margins than
50.1% are needed for total confidence in one’s ability to win a district, suggesting that
constraints increasing the necessary confidence and introducing “coin flips” when the mar-
gins are not large enough for total confidence may bring the protocol closer to realistic
implementation.

Keywords: Algorithmic Economics, Social Choice, Cake Cutting, Optimized Democracy,
Gerrymandering, Redistricting

1. Introduction

In the United States of America, local representatives are elected to the House of Repre-
sentatives via direct local elections held in single-member districts. Each district is roughly
equal in population, and the winner is decided via plurality. The Congressional districts
of a state are redrawn every ten years following the United States census. The rules for
redistricting vary from state to state, but all draw new Congressional maps via either their
own state legislature, redistricting commissions, or through some combination of the two
former.

As one might imagine, there is a great deal of partisan interest in the drawing of these
maps. A rather extreme (yet very politically relevant) example of this is that of the redraw-
ing of Florida’s congressional districts in 2022. In the state of Florida, the state legislature
is to be responsible for redistricting proposals, which are then passed similarly to any other
bill, to be approved by the governor prior to implementation. In the case of Florida, however,
Republican Governor Ron DeSantis expressed general disapproval for proposals passed by
the legislature, vetoing various proposals until the legislature expressed agreement regard-
ing the consideration of a DeSantis-created proposal (one that shows a markedly favorable
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outcome in seats for the Republican Party)1. Such an event sets a dangerous precedent
that may encourage other states to follow in Florida’s footsteps.

Even in the case of “independent” redistricting commissions, there often exists some
degree of partisan bias (even if this is justified through supposedly-equal representation in
the commission from all relevant parties).

Due to the inherent partisan biases within the maps drawn for the legislature, there is no
guarantee that the political makeup of the legislature will reflect the political composition of
statewide vote casts in the election. For example, in the 2020 United States House of Rep-
resentatives elections in Illinois, 57.10% of the population voted for the Democratic Party,
yet Democratic representatives won 13 of the 18 district elections (72% of the seats). The
Congressional map used in the election was drawn by the Illinois Democrats. Even worse,
under the new map, Democrats are projected to win 14 of Illinois’s 17 congressional seats
after the 2022 election (82% of the seats). This phenomenon is known as gerrymandering.

Gerrymandering is the process of constructing districts in such a way as to give your
political party an advantage in elections. There are two principal tactics in gerrymandering,
“packing” and “cracking.” Packing is when you create a single district that concentrates
many voters of a single party in order to reduce that party’s voting power in other districts.
Cracking is when you spread out the voting power of a party across many districts in order
to dilute their overall voting power in certain districts. The overall goal is to pack opposition
voters into some districts, effectively guaranteeing them some small number of government
seats, while cracking across other districts in order to raise the chances of one’s own party
gaining a high number of seats.

Gerrymandering in the field of Algorithmic Economics is generally viewed through the
lens of cake cutting. Cake cutting tries to solve the problem of fairly dividing a heteroge-
neous, divisible good between several agents with different preferences. Naturally, one can
see the connection to political districting and how cake cutting methods could be used to
solve the problem of gerrymandering.

2. Related Works

Cake cutting aside, there are several metrics to detect gerrymandering in congressional
district maps. Warrington (2019) compares and contrasts several metrics for detecting
gerrymandering, such as the efficiency gap. The efficiency gap was first introduced by
McGhee (2014) and Stephanopoulos and McGhee (2015), with the goal of the setting a
quantifiable, legal standard for what constitutes gerrymandering. The metric works off the
notion of wasted votes. A wasted vote is any vote cast for the losing party in a district,
or the winning party above a majority. The efficiency gap is calculated as the difference
between the two parties’ wasted votes divided by the total number of votes. Most of the
other metrics created are extensions on the efficiency gap, but ultimately, the efforts of
this metric (and potentially others to come) failed when the Supreme Court rejected the
standard in its 2018 decision in Gill v. Whitford.

In contrast to using methods to simply determine the fairness of districting proposals
that were chosen under existing legal standards, there have been various protocols intro-

1. As of May 2022, the congressional map drawn by DeSantis’ staff has been deemed unconstitutional by
a Florida state judge.
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duced that attempt to solve gerrymandering by finding a balance between two opposing
partisan interests. The goal is to create a protocol by which there is no need to evaluate
the fairness of a proposal, as the proposal is inherently fair to some degree prescribed by
the protocol itself.

Landau et al. (2009) introduce a protocol that, following the nomenclature used by
De Silva et al. (2018), we shall refer to as the LRY protocol. The overarching idea is to have
one party divide one portion of a state into districts according to their own preferences,
while the other party divides the rest of the state into districts with their own goals in
mind. The thought is that having each party control some amount of the state yields a
higher degree of fairness and satisfaction than other existing methods.

Issues arise, however, upon closer analysis of the LRY protocol. Through the analysis of
De Silva et al. (2018) it is seen that the results achieved by this protocol can be arbitrarily
far from the geometric target. Landau and Su (2014) introduce the geometric target as a
measure of fairness and is commonly used as a relaxation to the proportionality metric.

Pegden et al. (2017) proposed a protocol with proven fairer outcomes. First, some
notation. The state is defined as an interval [0, n] (where n is the number of districts).
An n-districting is a set of n disjoint subsets of the interval, each of size 1. The idea of
votes in favor of one party is referred to as loyalty. If party A has 58% of the vote in a
particular district, they are said to have a loyalty in that district of 0.58. The measure of
the subset of [0, n] loyal to Player 1 is denoted as sn1 , and the measure of the subset of [0, n]
loyal to Player 2 is denoted as sn2 . The slate of a player is the outcome from a districting,
representing the number of districts loyal to them.

This protocol is structured such that two players take turns creating a n-districting and
choosing which one of those n districts they want to keep, or “freeze.” That district is then
frozen, the roles swap, and the process continues, using the unfrozen area as the state.

The game resultant from this protocol can be represented recursively as follows, where
k = n, s1 = sn1 , and A = 1, returning the slate of Player 1:

Procedure 1 I-cut-you-freeze Nongeometric

1: procedure GAME1(k, s1, A) ▷ Player A divides first
2: Player A chooses k numbers in [0, 1]: xk,1, . . . , xk,k s.t

k∑
i=1

xk,i = s1

3: Player B chooses an integer ik ∈ [k], where {A,B} = {1, 2}
4: return GAME1(k − 1, s1 − xk,ik , B) + [xk,ik ≥ 0.5]
5: end procedure

Let the unfrozen loyalties of Players 1 and 2 be s
(t)
1 and s

(t)
2 , respectively, at the beginning

of round t. The rounds begin at n and count down to 0, where the base case is defined
as GAME1(0, 0, A) = 0. Note: the procedure always returns the slate of Player 1, even if
A = 2.
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3. Our Contributions

Our contributions are inspired by the notion that mapmakers would want a more comfort-
able margin than 50.1% to consider a district safe. Generally, districts drawn in the United
States of America are drawn such that they are solidly Republican or Democrat, fewer dis-
tricts slightly lean one way or the other, and an even smaller portion are competitive. The
interest in examining this model is to see how many solid districts are guaranteed under the
I-cut-you-freeze protocol, given that players attempt to create them under optimal play.

3.1 Proposed Slate-Scoring Functions

We propose using one of the three following functions to score how likely a win is for Player
1 in a given district. The functions were derived based on the criticism of Pegden et al.
(2017) that, in reality, partisan map drawers will attempt to increase the margin of victory
for a given district well above the protocol’s >0% margin of victory. Let a and b be the
upper and lower bound for the ends of the margin of victory, these could be set to any
with [0, 1]. Setting a = b = 0.5 will recover the original mechanism for the I-cut-you-freeze
protocol. Function 1 is meant to be thought of as if the chance of winning a district is an
even coin flip between a and b, where b ≥ a.

(1) h1(x) =


1 if x ≥ b ,
0.5 if a < x < b ,
0 otherwise

While function 2 is meant to be thought of as a weighted coin flip.

(2) h2(x) =


1 if x ≥ b ,
x if a < x < b ,
0 otherwise

Function 3 is similar to function 2 in that it weights the chance of winning based on the
loyalty of a district, but maps between zero and one versus a and b.

(3) h3(x) =


1 if x ≥ b ,
1

b−a(x− a) if a < x < b ,

0 otherwise

Remark 1 The above functions necessarily change the original meaning of the output of
the I-cut-you-freeze procedure 1. The original meaning was the number of districts won by
Player 1, whereas the new meaning is akin to a utility, or how optimally Player 1 is utilizing
their loyalty. This is due in part to partial-seats being awarded to players when a competitive
district is created. Thus, the above functions will produce a result that is less than or equal
to what the original procedure would produce.

3.2 A Higher Threshold for Guaranteed District Wins

We set a = 0.425 and b = 0.575. The assumption being made is that each player is only
afforded a guaranteed win in a district if their loyalty within that district is at least 57.5%.
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This emulates what are considered to be safe districts in American politics. Politicians
generally draw up districts in which they have a lead of greater than or equal to 15 per-
centage points above the national average. So if the national average in America was a 2
point win by Republicans over Democrats, Democratic districts would need at least a 17
point margin of victory to be considered safe; that is, at least a 58.5% to 41.5% expected
result. On the other hand, Republican districts would need a 13 point margin of victory to
be considered safe. Assuming a relatively equal loyalty toward each party on the national
level, the threshold can reasonably be set at 57.5%. Procedure 2 is a modification of proce-
dure 1 using the aforementioned bounds and will be used from here on out unless otherwise
specified.

Procedure 2 I-cut-you-freeze Nongeometric (Unweighted Competitive Districts)

1: procedure GAME2(k, s1, A) ▷ Player A divides first
2: Player A chooses k numbers in [0, 1]: xk,1, . . . , xk,k s.t

k∑
i=1

xk,i = s1

3: Player B chooses an integer ik ∈ [k], where {A,B} = {1, 2}
4: return GAME2(k − 1, s1 − xk,ik , B) + h1(xk,ik)
5: end procedure

Let the function f(k, s1, A) be the output of GAME2(k, s1, A) when the two players are
playing optimally. Then we have that

f(k, s1, 1) = max
xk,1,...,xk,k

min
i∈[k]

(f(k − 1, s1 − xk,i, 2) + h1(xk,ik)) , and(4)

f(k, s1, 2) = min
xk,1,...,xk,k

max
i∈[k]

(f(k − 1, s1 − xk,i, 1) + h1(xk,ik)) .(5)

This function is monotonically increasing with respect to s1. This intuitively makes
sense as with a higher total measure of loyalty it is expected that the slate attainable
under optimal play will yield a greater than or equal slate than a lower total measure of
loyalty. Given that the only change from Pegden et al. (2017) is increasing the threshold
for which a district is to be considered confidently won, these results should not deviate.
For convenience, lemma 3.1 from Pegden et al. (2017) is stated below. (The majority of the
lemmas and overall proof structures shall resemble those of Pegden et al. (2017).)

Lemma 2 f(k, s1, A) ≤ f(k, s′1, A) if s1 < s′1. ■

The following lemma shows that under optimum play, players will divide the unfrozen region
into districts with at most three distinct loyalty values.

Lemma 3 For any GAME2(k, s1, A), there are numbers ω ≥ 0.575 > τ > 0.425 ≥ λ such
that under optimum play, Player A will choose each xk,i to be ω, τ , or λ.

Proof Let W = {i : xk,i ≥ 0.575}, L = {i : xk,i ≤ 0.425}, and T = ([k] − W ) − L.
First consider A = 1, applying lemma 2 to GAME2(k − 1, s1 − xk,i, 2) one can see that
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the optimum move for Player 2 is to pick i = argmaxj∈W xk,j , i = argmaxj∈T xk,j , or
i = argmaxj∈L xk,j . This is because Player 2 will want to pack as much of Player 1’s loyalty
into a single district, regardless of outcome. In the instance of W , Player 2 is guaranteed to
lose, therefore, they will attempt to waste as much of Player 1’s loyalty in that district to
prevent it from being used in others. (The reasoning is analogous for the case of T .) For the
case of L, Player 2 is guaranteed a win, thus they will attempt to pack as many of Player
1’s loyalty into the district while still remaining the winner, again this is about wasting the
loyalty of Player 1 in this district so that it may not be utilized elsewhere. Therefore, under
optimum player, Player 1 will assign an identical number ω to W , τ to T , and λ to L such
that ω =

∑
i∈W xk,i/|W | if W ̸= ∅, τ =

∑
i∈T xk,i/|T | if T ̸= ∅, and λ =

∑
i∈L xk,i/|L| if

L ̸= ∅. This strategy eliminates the choice of Player 2 from wasting potential loyalties. The
case for A = 2 is analogous.

In round t, if s
(t)
1 ≥ 0.575t, we say Player 1 is stronger and Player 2 is weaker in this

round; if s
(t)
1 ≤ 0.425t, we say Player 2 is stronger and Player 1 is weaker in this round. If

s
(t)
1 > 0.425t+ 0.15, we say Player 1 is α-competitive and Player 2 is β-competitive in this

round; whereas, if s
(t)
1 ≤ 0.425t + 0.15, we say Player 1 is β-competitive and Player 2 is

α-competitive in this round. (It is possible at t = 1 for both players to be β-competitive.)
The full table of which label each player is at a given round is provided in table 1, and the
scenarios that are possible are provided in table 2.

Player A

Label Player 1 Player 2

Stronger s
(t)
1 ≥ 0.575t s

(t)
1 ≤ 0.425t

α-competitive s
(t)
1 > 0.425t+ 0.15 s

(t)
1 < 0.575t− 0.15

β-competitive s
(t)
1 ≤ 0.425t+ 0.15 s

(t)
1 ≥ 0.575t− 0.15

Weaker s
(t)
1 ≤ 0.425t s

(t)
1 ≥ 0.575t

Table 1: Labels for each player at the start of each round t.

Player B

Player A Stronger α-competitive β-competitive Weaker

Stronger Impossible Impossible Impossible Possible

α-competitive Impossible Impossible Possible Impossible

β-competitive Impossible Possible Possible Impossible

Weaker Possible Impossible Impossible Impossible

Table 2: Possibility of label pairs for the players.

From lemma 3, one can see that Player A’s move is completely characterized by the
choice of ω, τ , and λ. Therefore, Player B’s response will result in the following three
possibilities assuming A = 1 and without loss of generality: f(k − 1, s1 − ω, 2) + 1, f(k −
1, s1 − τ, 2) + 0.5, and f(k − 1, s1 − λ, 2). This of course assumes the remaining game-play
is optimal. This implies the following lemma.
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Lemma 4 Given possible choices (ω, τ, λ) and (ω′, τ ′, λ′) for Player A satisfying ω ≤ ω′,
τ ≤ τ ′, and λ ≤ λ′, the choice (ω, τ, λ) dominates the choice (ω′, τ ′, λ′) if A = 1; otherwise,
the choice (ω′, τ ′, λ′) dominates the choice (ω, τ, λ).

From the above, we can state the following two lemmas.

Lemma 5 In any GAME2(k, s1, A), Player A, if stronger or β-competitive, chooses xk,1 =
xk,2 = · · · = xk,k in optimum play. In particular:

A stronger =⇒ f (k, s1, A) = f (k − 1, s1 − s1/k,B) + h1(s1/k).

Proof This is the optimal move because in the strong case, Player A is only proposing
districts for which they are equally solidly winning (preventing Player B from choosing the
district that wastes Player A’s loyalty). In the β-competitive case they force a competitive
district (also preventing wasting Player A’s loyalty) instead of handing the opponent a solid
district.

Lemma 6 In any GAME2(k, s1, A), Player A = 1, if α-competitive, will choose the max-
imum amount of xk,i values to be 0.575 such that the remaining loyalty can be divided
equally and still have a value greater than 0.425, let this value be τ1. Player A = 2, if
α-competitive, will choose the minimum amount of xk,i values to be 0.425 such that the
remaining loyalty can be divided equally and still have a value less than 0.575, let this value
be τ2. In particular:

A = 1, α-competitive =⇒ f (k, s1, 1) = f (k − 1, s1 − τ1, 2) + 0.5.

A = 2, α-competitive =⇒ f (k, s1, 2) = f (k − 1, s1 − τ2, 1) + 0.5.

Proof This is the optimal move for both players as Player A is proposing districts that
they either are equally solidly winning, or competitive without wasting loyalty (since it’s
score of 0.5 for both players, Player B would want to choose the competitive district that
wastes the most of Player A’s loyalty, but proposing competitive districts all of equal loy-
alty values eliminates the possibility of such a strategy for Player B). When A=2, player
A wants to waste as much as possible of player B’s vote, thus would want as many high
loyalty value competitive districts as possible, which is achieved by minimizing the number
of winning districts proposed (since player B will not choose the district with value 0.425,
and will instead choose one of the competitive districts).

Lemma 7 In any GAME1 (k, s1, A), if Player A is weaker and sA ≥ 0.425, the following
strategies for players are optimal:

• Let m =
⌊

1
0.575sA

⌋
if A = 1,m =

⌈
1

0.575sA
⌉
− 1 if A = 2. Player A will divide the

resources such that their proportion in each district is either 0 or sA/m; however, this
should be done only if sA/m ≥ 0.575, if not, use the following strategy.
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(a) 10 total seats. (b) 100 total seats.

Figure 1: Simulated utility results for Player 1 under optimal play. α represents the loyalty
of Player 1 in the state as a percentage.

• Let m =
⌈

1
0.425sA

⌉
− 1 if A = 1,m =

⌊
1

0.425sA
⌋
if A = 2. Player A will divide the

resources such that their proportion in each district is either 0 or sA/m.

• Player B will choose a district where his loyalty is 1.

The previous lemma is what we believe to be optimal play when player A is weaker,
though we were unable to prove this. Our intuition is that if a player is weaker they
would want to pack their opponent into districts with 100 percent loyalty as many times
as needed such that the remaining number of districts can each have loyalty equal to the
total remaining loyalty during that round divided such that they are wins for themselves
or competitive districts.

Figure 1 shows the resulting utility of Player 1 from the I-cut-you-freeze procedure
using the modified procedure 2. Ideally we would like to prove a function for all cases.
Interestingly the curve is not as smooth in the middle as the results of the original procedure
(it becomes almost linear). It is important to recognize that the modified procedure also
yields fair results in these empirical tests, meaning that our attempt to bring a bit more
realism to the I-cut-you-freeze protocol is generally successful.

3.3 Weighted Competitive Districts

Next, we consider how the previous analysis might change if the competitive districts are
weighted by the amount of loyalty within them. Procedure 3 is a modification of procedure
1 using the previous bounds and will be used from here on out unless otherwise specified.
It is important to note that analysis using slate-scoring functions h2 and h3 is equivalent,
as strategy is the same for each case.
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Procedure 3 I-cut-you-freeze Nongeometric (Weighted Competitive Districts)

1: procedure GAME3(k, s1, A) ▷ Player A divides first
2: Player A chooses k numbers in [0, 1]: xk,1, . . . , xk,k s.t

k∑
i=1

xk,i = s1

3: Player B chooses an integer ik ∈ [k], where {A,B} = {1, 2}
4: return GAME2(k − 1, s1 − xk,ik , B) + h2(xk,ik)
5: end procedure

The cases where Player A is stronger, weaker, and β-competitive remain the same.
Strategy changes, however, in the case where Player A is α-competitive. Under the previous
rules for competitive districts (each player gets 0.5 added to their slate), the overarching
goal was to choose some amount of districts that they barely win, then all ties of the same
value (see lemma 6). In any GAME3(k, s1, A), Player A = 1, if α-competitive, will choose
the minimum amount of xk,i values to be 0.575 such that the remaining loyalty can be
divided equally and still have a value greater than 0.425, let this value be τ1. Player A = 2,
if α-competitive, will choose the maximum amount of xk,i values to be 0.425 such that the
remaining loyalty can be divided equally and still have a value less than 0.575, let this value
be τ2. Under the previous rules, Player A tried to minimize the loyalty value (in terms of
their loyalty) of the ties to waste Player B’s loyalty. Under these new rules, Player A tires to
maximize the loyalty value of the competitive districts to give themselves the highest value
competitive districts possible (since the value added to each player’s slate is equal to their
loyalty in the frozen competitive district, as opposed to giving each player 0.5 regardless).

4. Future Work

Some other possible extensions to Pegden et al. (2017) are imposing geometric constraints
on the geometric procedure. Pegden et al. (2017), propose the constraint 4πAD/PD, where
AD is the area of a district and PD is the perimeter. Another such constraint is imposing
that a district must be a fat object, which has no greater a “slimness factor” than R. Simply
put, the district must be R-fat. Geometric constraints already exist for redistricting, for
instance, the district must be a contiguous object and generally there is this notion that the
district must be “compact;” however, there are no lawful definitions of “compact.” Thus,
imposing such compactness constraints may not make much sense, as there is little use of
such a constraint in common redistricting practice. This was also mentioned in brief by
Pegden et al. (2017). Regardless, some interesting results may arise from imposing such
constraints; for example, it may be possible for a player to dominate the remainder of the
game by abusing the geometric constraints imposed in the initial phase of the game. Such
results would provide greater insight to the I-cut-you-freeze protocol.
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5. Conclusion

The I-cut-you-freeze protocol markedly improves upon the previous work done to prevent
gerrymandering, as it provably yields results with a high degree of fairness. Notably, it also
removes the need for an impartial party to run the procedure, as was the case in the LRY
protocol. Additionally, it directly attempts to stop gerrymandering as opposed to simply
using statistical metrics to determine if a map has been gerrymandered, and to what extent.
Pegden et al. (2017) proved the fairness of the protocol with relatively naive constraints on
the strategies of the players. This paper shows that even with more realistic constraints
on the procedure, the I-cut-you-freeze protocol remains a partisan districting protocol with
provably nonpartisan outcomes.
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Appendix

The python code used to generate the two plots.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 plt.style.use("_mpl -gallery")

5 plt.rcParams.update ({"font.size": 22})

6

7

8 def is_stronger(player , remaining_loyalty , t):

9 if player == 1:

10 return remaining_loyalty >= 0.575 * t

11 else:

12 return remaining_loyalty <= 0.425 * t

13

14

15 def is_alpha_competitive(player , remaining_loyalty , t):

16 if player == 1:

17 return remaining_loyalty > 0.425 * t + 0.15

18 else:

19 return remaining_loyalty < 0.575 * t - 0.15

20

21

22 def is_beta_competitive(player , remaining_loyalty , t):

23 if player == 1:

24 return remaining_loyalty <= 0.425 * t + 0.15

25 else:

26 return remaining_loyalty >= 0.575 * t - 0.15

27

28

29 def is_weaker(player , remaining_loyalty , t):

30 if player == 1:

31 return remaining_loyalty <= 0.425 * t

32 else:

33 return remaining_loyalty >= 0.575 * t

34

35

36 def h(x):

37 if x >= 0.575:

38 return 1

39 elif x > 0.425:

40 return 0.5

41 return 0

42

43

44 def get_x_alpha_competitive_player_1(remaining_loyalty , k):

45 z = k - 1

46 while z > 1 and (remaining_loyalty - 0.575 * z) / (k - z) <= 0.425:

47 z -= 1

48 return (remaining_loyalty - 0.575 * z) / (k - z)

49

50

51 def get_x_alpha_competitive_player_2(remaining_loyalty , k):

52 z = k - 1
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53 while z > 1 and (remaining_loyalty - 0.425 * z) / (k - z) >= 0.575:

54 z -= 1

55 return (remaining_loyalty - 0.425 * z) / (k - z)

56

57

58 def procedure(k, remaining_loyalty , player_a):

59

60 if k == 0:

61 return 0

62

63 if is_stronger(player_a , remaining_loyalty , k):

64 x = remaining_loyalty / k

65 elif is_alpha_competitive(player_a , remaining_loyalty , k):

66 if player_a == 1:

67 x = get_x_alpha_competitive_player_1(remaining_loyalty , k)

68 else:

69 x = get_x_alpha_competitive_player_2(remaining_loyalty , k)

70 elif is_weaker(player_a , remaining_loyalty , k):

71 x = 0 if player_a == 1 else 1

72 elif is_beta_competitive(player_a , remaining_loyalty , k):

73 x = remaining_loyalty / k

74

75 return procedure(

76 k - 1, remaining_loyalty - x, 2 if player_a == 1 else 1

77 ) + h(x)

78

79

80 seats = 100

81

82 xs = np.arange(seats * 10 + 1) / 10

83 ys = []

84

85 for i in xs:

86 ys.append(procedure(seats , i, 1))

87

88 # plot

89 fig , ax = plt.subplots(figsize =(10, 10))

90

91 ax.plot(xs, ys, linewidth =3.0, label="player 1 utiltiy")

92

93 best = np.floor (2 * xs)

94 mask = best > seats

95 best[mask] = seats

96

97 ax.plot(xs, best , linewidth =3.0, label="best case utility")

98 ax.plot(xs, np.flip(seats - best), linewidth =3.0, label="worst case utility"

)

99

100 ax.set(xlabel=r"$\alpha$", ylabel="utility")

101

102 plt.legend ()

103 plt.show()
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